CS615 - Aspects of System Administration

Backup, Monitoring

Department of Computer Science Stevens Institute of Technology Jan Schaumann jschauma@stevens.edu https://www.cs.stevens.edu/~jschauma/615/ Slide 1


```
$ curl -I https://www.cs.stevens.edu/~jschauma
HTTP/1.1 301 Moved Permanently
Date: Sat, 31 Mar 2018 21:09:57 GMT
Server: Apache
Location: https://www.stevens.edu/ses/cs/errors/404.html
Vary: Accept-Encoding
Content-Type: text/html; charset=iso-8859-1
```

\$ curl -I https://www.stevens.edu/ses/cs/errors/404.html
HTTP/2 404
[...]

```
$ curl -I https://www.cs.stevens.edu/~jschauma
HTTP/1.1 301 Moved Permanently
Date: Sat, 31 Mar 2018 21:09:57 GMT
Server: Apache
Location: https://www.stevens.edu/ses/cs/errors/404.html
Vary: Accept-Encoding
Content-Type: text/html; charset=iso-8859-1
```

\$ curl -I https://www.stevens.edu/ses/cs/errors/404.html
HTTP/2 404
[...]

\$ ssh jschauma@git.srcit.stevens-tech.edu
jschauma@git.srcit.stevens-tech.edu's password:

"The website is back up... ish"

\$ curl -I https://www.cs.stevens.edu/~jschauma/615/ HTTP/1.1 200 OK Date: Sat, 31 Mar 2018 21:21:39 GMT Server: Apache Last-Modified: Tue, 25 Apr 2017 16:38:05 GMT Backups vs. Restores

Backups are just a *means* to accomplish a specific *goal*:

To have the ability to restore data.

Backup, Monitoring

April 2, 2018

- Iong-term storage / archival
- recover from data loss

Backup, Monitoring

April 2, 2018

- full set of level 0 backups
- separate set from regular backups
- usually stored off-site
- recovery / retrieval takes time
- limited granularity
- storage media considerations
- storage media transport considerations
- backup encryption and recovery key management

- Iong-term storage / archival
- recover from data loss due to

- Iong-term storage / archival
- recover from data loss due to

- Iong-term storage / archival
- recover from data loss due to

- Iong-term storage / archival
- recover from data loss due to

- Iong-term storage / archival
- recover from data loss due to

- Iong-term storage / archival
- recover from data loss due to
 - equipment failure
 - bozotic users
 - natural disaster
 - security breach
 - software bugs

When do we need backups?

- Iong-term storage / archival
- recover from data loss due to
 - equipment failure
 - bozotic users
 - natural disaster
 - security breach
 - software bugs

Think of your backups as *insurance*: you invest and pay for it, hoping you will never need it.

Disaster Recovery

- loss of e.g. entire file system
- leads to downtime (of individual systems)
- RAID may help
- takes long time to restore
- may require retrieval of archival backups from long-term storage
- often involves some data loss

Disaster Recovery

- loss of e.g. entire file system
- leads to downtime (of individual systems)
- RAID may help
- takes long time to restore
- may require retrieval of archival backups from long-term storage
- often involves some data loss

Beware: disasters scale up much faster than your backup strategy!

File deletion recovery

Accidentally deleted files ought to be recoverable for a certain amount of time:

- "Undo"
- time window and granularity requirements
- restore time, including
 - actual time spent restoring
 - waiting until resources permit the restore
 - staff availability
- self-service restore

But note: sometimes people *do* want to delete data and it be gone!

ssh ec2-instance "dump -u -0 -f - /" | bzip2 -c -9 >tmp/ec2.0.bz2 DUMP: Found /dev/rxbd1a on / in /etc/fstab DUMP: Date of this level 0 dump: Mon Apr 2 19:34:30 2018 DUMP: Date of last level 0 dump: the epoch DUMP: Dumping /dev/rxbd1a (/) to standard output DUMP: Label: none DUMP: mapping (Pass I) [regular files] DUMP: mapping (Pass II) [directories] DUMP: estimated 962609 tape blocks. DUMP: Volume 1 started at: Mon Apr 2 19:34:34 2018 DUMP: dumping (Pass III) [directories] DUMP: dumping (Pass IV) [regular files] DUMP: 42.40% done, finished in 0:06 DUMP: 83.38% done, finished in 0:01 DUMP: 963445 tape blocks DUMP: Volume 1 completed at: Mon Apr 2 19:46:38 2018 DUMP: Volume 1 took 0:12:04 DUMP: Volume 1 transfer rate: 1330 KB/s DUMP: Date of this level 0 dump: Mon Apr 2 19:34:30 2018 DUMP: Date this dump completed: Mon Apr 2 19:46:38 2018 DUMP: Average transfer rate: 1330 KB/s DUMP: level 0 dump on Mon Apr 2 19:34:30 2018 DUMP: DUMP IS DONE

```
$ cat /etc/dumpdates
/dev/rxbd1a 0 Mon Apr 2 19:34:30 2018
$ ssh ec2-instance "dump -u -i -f - /" | bzip2 -c -9 >tmp/ec2.1.bz2
 DUMP: Found /dev/rxbd1a on / in /etc/fstab
 DUMP: Date of this level i dump: Mon Apr 2 20:09:24 2018
 DUMP: Date of last level 0 dump: Mon Apr 2 19:34:30 2018
 DUMP: Dumping /dev/rxbd1a (/) to standard output
 DUMP: Label: none
 DUMP: mapping (Pass I) [regular files]
 DUMP: mapping (Pass II) [directories]
 DUMP: estimated 25307 tape blocks.
 DUMP: Volume 1 started at: Mon Apr 2 20:09:33 2018
 DUMP: dumping (Pass III) [directories]
 DUMP: dumping (Pass IV) [regular files]
 DUMP: 25244 tape blocks
 DUMP: Volume 1 completed at: Mon Apr 2 20:09:50 2018
 DUMP: Volume 1 took 0:00:17
 DUMP: Volume 1 transfer rate: 1484 KB/s
 DUMP: Date of this level i dump: Mon Apr 2 20:09:24 2018
 DUMP: Date this dump completed: Mon Apr 2 20:09:50 2018
 DUMP: Average transfer rate: 1484 KB/s
 DUMP: level i dump on Mon Apr 2 20:09:24 2018
 DUMP: DUMP IS DONE
```

\$ rm /etc/resolv.conf # oops \$ restore -i -f /backups/ec2.0
...

Poor Man's Cloud Backup via tar(1)

Copying to a file system:

\$ tar cf - data/ | ssh ec2-instance "tar -xf - -C /var/backups/\$(date)"

Writing to a block device, no filesystem necessary:

```
$ tar cf - data/ | ssh ec2-instance "dd of=/dev/rxb2a"
$ ssh ec2-instance "dd if=/dev/rxb2a" | tar tvf -
```

Encrypting along the way:

\$ tar cf - data/ | gpg --encrypt -r recipient | ssh ec2-instance "dd of=/dev/rxb2a"

Know a Unix Command

https://www.xkcd.com/1168/ https://www.cs.stevens.edu/~jschauma/615/tar.html

Backup, Monitoring

April 2, 2018

Example: Mac OS X "Time Machine":

- automatically creates a full backup (equivalent of a "level 0 dump") to separate device or NAS, recording (specifically) last-modified date of all directories
- every hour, creates a full copy via *hardlinks* (hence no additional disk space consumed) for files that have not changed, new copy of files that have changed
- changed files are determined by inspecting last-modified date of directories (cheaper than doing comparison of all files' last-modified date or data)
- saves hourly backups for 24 hours, daily backups for the past month, and weekly backups for everything older than a month.

Slide 32

Example: WAFL (Write Anywhere File Layout)

- used by NetApp's "Data ONTAP" OS
- a snapshot is a read-only copy of a file system (cheap and near instantaneous, due to CoW)
- uses regular snapshots ("consistency points", every 10 seconds) to allow for speedy recovery from crashes

Example: WAFL (Write Anywhere File Layout)

Backup, Monitoring

Example: WAFL (Write Anywhere File Layout)

Example: WAFL (Write Anywhere File Layout)

Backup, Monitoring
Filesystem backup

Example: WAFL (Write Anywhere File Layout)

Filesystem backup

Example: ZFS snapshots

- ZFS uses a copy-on-write transactional object model (new data does not overwrite existing data, instead modifications are written to a new location with existing data being referenced), similar to WAFL
- a snapshot is a read-only copy of a file system (cheap and near instantaneous, due to CoW)
- initially consumes no additional disk space; the writable filesystem is made available as a "clone"
- conceptually provides a branched view of the filesystem; normally only the "active" filesystem is writable

\$ pwd /home/jschauma \$ ls -l .z* ls: cannot access .z*: No such file or directory \$

```
$ pwd
/home/jschauma
$ ls -l .z*
ls: cannot access .z*: No such file or directory
$ ls -lid .zfs
1 dr-xr-xr-x 3 root root 3 Jan 10 2013 .zfs
$
```

```
$ pwd
/home/jschauma
$ ls -1 .z*
ls: cannot access .z*: No such file or directory
$ ls -lid .zfs
1 dr-xr-xr-x 3 root root 3 Jan 10 2013 .zfs
$ ls -lai .zfs/snapshot
total 13
2 dr-xr-xr-x 4 root
                                   4 Feb 28 21:00 .
                        root
1 dr-xr-xr-x 3 root
                                   3 Jan 10 2013 ..
                        root
4 drwx--x--x 37 jschauma professor 88 Feb 24 22:32 amanda-_export_home_jschauma-0
4 drwx--x--x 37 jschauma professor 88 Feb 26 11:47 amanda-_export_home_jschauma-1
$
```

```
$ pwd
/home/jschauma
$ ls -1 .z*
ls: cannot access .z*: No such file or directory
$ ls -lid .zfs
1 dr-xr-xr-x 3 root root 3 Jan 10 2013 .zfs
$ ls -lai .zfs/snapshot
total 13
2 dr-xr-xr-x 4 root root
                                   4 Feb 28 21:00 .
1 dr-xr-xr-x 3 root root
                                   3 Jan 10 2013 ..
4 drwx--x--x 37 jschauma professor 88 Feb 24 22:32 amanda-_export_home_jschauma-0
4 drwx--x--x 37 jschauma professor 88 Feb 26 11:47 amanda-_export_home_jschauma-1
$ cd .zfs/snapshot
$ echo foo > amanda-_export_home_jschauma-0/oink
-ksh: amanda-_export_home_jschauma-0/oink: cannot create [Read-only file system]
$ ls -laid . /
2 dr-xr-xr-x 4 root root 4 Feb 28 21:00.
2 drwxr-xr-x 26 root root 4096 Jan 27 11:44 /
```

```
$ pwd
/home/jschauma/.zfs/snapshot
$ ls -lai amanda-_export_home_jschauma-0 >/tmp/a
$ ls -lai amanda-_export_home_jschauma-1 >/tmp/b
$ diff -bu /tmp/[ab]
--- /tmp/a 2014-03-01 22:55:49.000000000 -0500
+++ /tmp/b 2014-03-01 22:55:59.00000000 -0500
@@ -35,7 +35,7 @@
57723 drwx-----
                  3 jschauma professor
                                              6 Dec 31 15:08 .subversion
49431 -rw-----
                  1 jschauma professor
                                              6 Dec 22 12:25 .sws.pid
   20 drwx-----
                  2 jschauma professor
                                              3 Jan 26 10:30 .vim
                                          14538 Feb 24 22:32 .viminfo
-61768 -rw-----
                  1 jschauma professor
+61775 -rw-----
                  1 jschauma professor
                                      14557 Feb 26 09:23 .viminfo
  173 -rw-----
                  1 jschauma professor 4355 Sep 17 2012 .vimrc
                  1 jschauma professor
45744 -rw-r--r--
                                              0 Jul 28 2013 .xsession-errors
                  3 jschauma professor
   21 drwxr-xr-x
                                              6 Apr 4 2010 CS615A
```

\$

Summary

- backups are most commonly done as incrementals of a filesystem, mountpoint, or directory hierarchy
- consider (long-term) storage:
 - media and location
 - increased storage requirements
 - privacy and safety of the data
- self-service restores and filesystem snapshots
- backups need to be:
 - regular, frequent, automated
 - invisible
 - verifiable
 - regularly tested

Slide 45

Hooray!

5 minute break

Backup, Monitoring

Problem Report

"Something's wrong."

Now what?

Problem Report

"The system feels slow."

"I can't log in."

"My mail was not delivered."

"The site is down."

Now what?

To the logs!

Backup, Monitoring

Answers

"The system feels slow."

up 1318 days, 13:46, 1 user, load averages: 993.81, 272.91, 1012.18

"I can't log in."

Apr 6 09:25:56 <auth.info>hostname sshd[1624]: Failed password for jdoe from 115.239.231.100 port 1047 ssh2

"My mail was not delivered."

Apr 11 16:15:40 panix postfix/smtpd[7566]: connect from unknown[122.3.68.122]
Apr 11 16:15:41 panix postfix/smtpd[7566]: NOQUEUE: reject_warning: RCPT from
unknown[122.3.68.122]: 450 4.7.1 Client host rejected: cannot find your hostname,
[122.3.68.122]; from=<McneilRomany28@pldt.net> to=<jschauma@stevens.edu>
proto=ESMTP helo=<122.3.68.122.pldt.net>

Slide 52

Answers

"The site is down."

94.242.252.41 - "" [11/Apr/2016:19:18:47 -0400] "GET /secret/ HTTP/1.1" 403 524 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:28.0) Gecko/20100101 Firefox/28.0"

Answers

"The site is down."

94.242.252.41 - "" [11/Apr/2016:19:18:47 -0400] "GET /secret/ HTTP/1.1" 403 524 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:28.0) Gecko/20100101 Firefox/28.0"

Events

"Something's wrong." is just an *unexpected* or *undesirable* event.

Events

"Something's wrong." is just an *unexpected* or *undesirable* event.

Events happen all the time.

Backup, Monitoring

"Something's wrong." is just an *unexpected* or *undesirable* event.

Events happen all the time.

Being able to identify *relevant* events allows you to diagnose, predict and even prevent *undesirable* events.

Events

In order to be able to identify an event as *unexpected*, you have to have *expected* events.

Know your applications.

Backup, Monitoring

Know your applications.

Know your users.

Know your applications.

Know your users.

Know your traffic patterns.

Know your applications.

Know your users.

Know your traffic patterns.

Know your systems.

Backup, Monitoring

Events and Metrics

\$ dict event

event

- n 1: something that happens at a given place and time
- 2: a special set of circumstances; "in that event, the first possibility is excluded"; "it may rain in which case the picnic will be canceled" [syn: {event}, {case}]

\$ dict metric

metric

3: a system of related measures that facilitates the quantification of some particular characteristic [syn: {system of measurement}, {metric}]

Events and Metrics

Events and Metrics

Events

- may occur rarely / frequently / constantly
- can be collected in logs
- may be comprised of other events
- may be: something happened
- may be: nothing (new) happened

Metrics:

- correlation of related events
- may help identify outliers
- may trigger events
- may help make (automated or interactive) decisions

Collecting Data

Counters: easy, numeric data tracking individual events. Example: HTTP status codes

Timers: easy, numeric data tracking event duration. Example: Time to send all data for a successful HTTP request.

Thresholds: easy, numeric trigger for events; may itself trigger events or metrics. Example: more than N HTTP hits in X seconds yield 404.

Know Your Systems

Profile your application:

- execution time (for example: time(1))
- data sources and destination affect execution
- strace(1) and friends for more detailed analysis

Understand your system performance:

- CPU load, memory (for example: top(1), vmstat(1))
- disk I/O (for example: iostat(1))
- user activity (for example: ac(1), lsof(8), sa(8))

Know Your Systems

Network statistics:

- ports and applications (for example: lsof(8), netstat(8))
- packets in and out
- connection origin
- NetFlow etc.

Context

Context lets you find relevant events in your haystack of metrics.

Disk I/O - 12 hours

Backup, Monitoring

Some context.

12 hours

With context.

7 days

Know your systems.

30 days

Turn *events* into *metrics*.

Log it!

- Export counters/timers from within your application.
- Process logs and produce counters/timers:

```
awk {print $9} /var/log/httpd/access.log | sort | uniq -c
```

Graph it. https://is.gd/tDCmQI Slide 77

Monitoring/graphing

SNMP based:

- Cacti: http://www.cacti.net/
- MRTG: http://oss.oetiker.ch/mrtg/
- Observium: http://demo.observium.org/

Θ...

Other / complementary:

- Ganglia: http://monitor.millennium.berkeley.edu/
- Munin: http://munin.ping.uio.no/
- Nagios: http://nagioscore.demos.nagios.com/
- Graphite: http://graphite.wikidot.com/

To the cloud!

Theres a service for that. In the cloud.

Consider:

- support / convenience vs. do-it-yourself
- integration with your other services
- data confidentiality
- data lock-in (esp. when trending data over years)

Increasing the size of your haystack does not always help in finding the needle.

Increasing the size of your haystack does not always help in finding the needle.

Email is not a scalable network monitoring solution.

Increasing the size of your haystack does not always help in finding the needle.

Email is not a scalable network monitoring solution.

Absence of a signal can itself be a signal.

Monitoring Pitfalls

Increasing the size of your haystack does not always help in finding the needle.

Email is not a scalable network monitoring solution.

Absence of a signal can itself be a signal.

This list is incomplete.

Reading

Hurricane Sandy

- http://is.gd/aaxzvI
- http://is.gd/Y75pEA
- http://is.gd/32Az7y
- http://is.gd/FhAuFZ

Reading

Backups with dump(8) and restore(8):

- dump(8) and restore(8)
- https://is.gd/bXG9of

Filesystem snapshots:

- https://en.wikipedia.org/wiki/Snapshot_(computer_storage)
- https://en.wikipedia.org/wiki/Time_Machine_(Apple_software)
- http://comet.lehman.cuny.edu/jung/cmp426697/WAFL.pdf

Book: http://www.oreilly.com/catalog/unixbr/

Reading

Monitoring:

0

https://www.paperplanes.de/2013/3/28/monitoring-for-humans.html

- https://monitorama.com
- https://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html
- https://www.datadoghq.com/
- https://www.newrelic.com/
- https://www.elastic.co/products/logstash
- https://www.splunk.com/

Slide 86