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Abstract 

This paper focuses on the master development planning problem in the context of SoS acquisition with resource constraints, 

uncertainty, and conflicting stakeholder interests. Because most of the master plans are developed by an authority with significant 

control, which might not be true in a SoS environment. Different stakeholders might have conflicting master plans that require 

communication, negotiation and coordination. We propose a decentralized multi-stakeholder decision making framework where 

local stakeholders conduct acquisition development planning for individual benefits while the SoS-level stakeholder designs a 

coordination mechanism to facilitate the communication between stakeholders and further achieve a harmonious outcome. 

Specifically, we employ approximate dynamic programming and a transfer contract coordination mechanism to address the 

problem. We demonstrate the applicability of the proposed approach through a simple illustrative example.  
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1. Introduction 

A System of systems (SoS), a set of systems with managerial and operational independence integrating together to 

pursue unique capabilities
1
, brings many challenges to the current acquisition practices. Among the guidelines and 

procedures to enhance acquisition success
2,3

, the “Wave” model
4
 developed by Dahmann provides a time-sequenced 

guideline for practitioners to support SoS architecture development through primary steps of “conduct SoS analysis”, 

"develop SoS architecture”, “plan SoS update”, and “implement SoS update”. The Wave model is an iterative 
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process requiring a series of modeling, simulation, and analysis activities to establish associated SoS Systems 

Engineering (SE) information artifacts in each step. The artifacts are categorized into four groups: SoS capability-

related artifacts, SoS technical artifacts, system-related artifacts, and SoS management and planning artifacts. 

Among these information artifacts, a vital one is the SoS master plan which gives a top-level view across multiple 

SoS upgrade cycles and describes the long-term SoS acquisition and evolution strategy for SoS capabilities. 

Successful acquisition needs effective planning. Unfortunately, challenges emerge during the SoS planning process 

which include: 1) how to address the risks from the significant future uncertainties; 2) how to communicate and 

coordinate effectively between multiple stakeholders with different interests; 3) how to mitigate the computational 

complexity from an increasing number of systems and interactions. Some methods are available to tackle these 

challenges. For example, risk in acquisition is frequently addressed through a standard risk management process 

from risk identification to mitigation
3
. The acquisition community also employs methods like real options analysis

5
 

and portfolio analysis
6
 to cope with risks. Methods for coordination between different stakeholders are commonly 

negotiation-based (e.g., Memorandum of Agreement
2
) or standardization-based (e.g., Department of Defense 

Architecture Framework [DoDAF]
7
). However, these methods are not adequate to construct effective plans for SoS 

development. For instance, the real options analysis suffers from the computational intractability when uncertainties 

become more complex; the loss of communication efficiency from the back and forth negotiation leads to 

inappropriate plans. Hence we are motivated to propose a more effective framework for SoS planning.  

    We describe the master development planning problem in the context of SoS acquisition as, in technical language, 

a sequential decision making problem with resource constraints, uncertainty, and conflicting stakeholder interests. 

Fig. 1 shows the fundamental problem setup, illustrating a hierarchy of stakeholders where, at the lowest level, an 

individual stakeholder (e.g., ‘Army’ in Fig. 1) controls a set of systems and acquisition decisions for long-term 

planning. The higher-level stakeholder (e.g., ‘DoD’ in Fig. 1) exercises certain control over these lower-level 

counterparts to accomplish required capabilities. Specifically, the higher-level stakeholder provides funding to the 

lower-level stakeholders with the understanding that the lower-level stakeholders are bounded by funding 

interdependencies. Christensen
8
 defines four types of interdependency between acquisition programs: funding, 

technological, support, and systems interaction requirements interdependency. We will focus on issues of funding 

interdependencies and technological interdependencies (upper right of Fig. 1), and particularly funding 

interdependency in this paper. In this setting, local stakeholders share limited funding resources governed by a SoS-

level stakeholder and interactions between systems may or may not exist. Each individual stakeholder observes the 

shared funding and uses it to develop an optimal portfolio of systems sequentially under uncertainty for its own sake. 

Meanwhile the SoS-level stakeholder aims to optimize the aggregate capabilities. In other words, the research 

objective is to formulate and solve SoS level capability development planning problem (under uncertainty) where 

local stakeholders seek to optimize individual capability by a sequence of decisions.  

 

 

Fig. 1. Fundamental Problem Setup.  
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2. Related Work 

The need to deal with questions of architecture and acquisitions from a SoS perspective has resulted in much 

research from multiple perspectives. The military acquisition community focused large efforts on developing 

conceptual and procedural guidance, such as the Defense Acquisition Guidebook
3
, the Systems Engineering Guide 

for SoS
2
, the Development Planning Guide

9
, the “Wave” model

4
 and so on. Other researchers have spent efforts 

developing analytical approaches to facilitate the conceptual guidance. Available methods include Epoch Era 

Analysis (EEA)
10,11,12

, multi-stage robust portfolio analysis
6,13

, Real Options Analysis (ROA)
5,14,15

, and method 

combining agent-based modeling, genetic algorithm and fuzzy evaluation
16,17,18

.  Each method distinguishes itself by 

several advantages; for example, the multi-stage robust portfolio analysis is effective at generating the tradespace 

between capability and risks that depends on users’ choices, while ROA provides a clear flexibility evaluation by 

inserting different options under uncertainty. However, these methods all suffer more or less from the issues of 

computational complexity when the target problem becomes complex (i.e., increase of systems, interactions, and 

uncertainties). Moreover, the decentralized nature of the stakeholders in an SoS (i.e., different stakeholders possess 

independent management and authority) has not been adequately addressed yet. These two issues are the primary 

identified gaps of our research.  

Many methods are suitable for the long-term sequential decision making. Typical methods are multi-stage 

stochastic programming and stochastic dynamic programming
19,20,21

, which have been widely applied in the area of 

operations research, energy management, finance management and so forth. However, both of them are confounded 

by the curses of dimensionality, that is, the explosion of state space, decision space and sample space. To reduce the 

computational intractability, approximation methods are combined with them under the name of Approximate 

Dynamic Programming (ADP)
22,23

. Thus ADP is quite a flexible modeling and algorithmic framework with various 

techniques ranging from approximation strategies to stochastic search strategies. By using these techniques ADP 

excels in converting the intractable problems to tractable problems, which has been proved in real applications of 

energy dispatch
24

, climate policy determination
25

 and so on. Based on these advantages of ADP and the need of 

addressing the potential computational complexity in the SoS development plan, we propose to use ADP to support 

the long-term decision making.  

Coordination mechanisms among decentralized stakeholders have been studied in a variety of fields involving 

control, operations research and revenue management, among others. Related methods include consensus control
26

, 

distributed optimization
27

, game-theory
28

, mechanism design
29

, and so forth. An important flow of work concerning 

decentralized stochastic dynamic systems has been researched upon in the airline alliance revenue management
30,31

, 

where itineraries and profits are coordinated between different airlines through transfer price.  Transfer contract 

(price)
32

 originally came forth in economics and finance to coordinate between different business units while 

currently it is also extended to software incremental development
33

. Considering the fact that the acquisition 

scenario we described shares significant similarities with the airline alliance or multi-business unit firm, we adopt 

the transfer contract mechanism to deal with the coordination. The noticeable differences such as the decision 

variables, the uncertainties and benefit evaluation metrics distinguish our work from others.  

3. Proposed Approach 

To address the development planning problem in SoS acquisition concerning the conflicting stakeholders, 

uncertainties, and restricted resources, we propose a decentralized planning framework integrating approximate 

dynamic programming and the transfer contract approach. We introduce these two elements in this section and 

subsequently build the model formulation under the framework.  

3.1. Approximate Dynamic Programming 

The beauty of ADP lies in the ability of generating decisions based on an approximation of expected future 

capability (or reward) value and corresponding updating from resultant new information. ADP alleviates the pain of 

collecting complete information and building a perfect model for optimizing a complex system of systems. At its 

core, the power of ADP is derived from the Bellman equation which is also the key driver for dynamic programming 
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in general. Classical dynamic programming recursively computes the Bellman equation below in a backward 

manner.  

               
                                                                                                                           (1) 

    Where    represents state variables,    represents decision variables,           means contribution earned by 

taking action    while in state    at time  ,   is the discount factor and            means expected value function of 

being in state     .  

    However, the exact future value is extremely difficult to obtain, thus approximated value       is usually used to 

replace     . A variety of approaches are available to approximate the value function, such as linear / piecewise 

linear approximation, Gaussian network, and so on. A generic structure for the value function approximation is 

given as follows
23

:  

                                                                                                                                                               (2) 

    Where              are referred to as features that describe the important characteristics capturing the total 

expected capability contribution in the future.     represents adjusting parameters that allow us to obtain different 

value function approximations.  

    Another challenge of solving the Bellman equation is calculating the expectation. Powell
23

 proposed an important 

concept of post-decision state variables to separate the effect of decisions and exogenous uncertain information. By 

using post-decision state variables, the Bellman equation can be written as:  

    
      

             
               

    
       

                                                                                           (3) 

    Where     
  represents post-decision state vector. In this equation, expectation can further be dropped by using a 

sample realization of the uncertainty      ; then the equation turns to the following form:  

     
      

           
               

          
                                                                                                 (4) 

Given a particular realization of      , the above equation becomes a deterministic optimization problem. 

Therefore, approximate dynamic programming manifests the advantage by avoiding the explosion of state space, 

sample space and decision space.   

3.2. Transfer Contract Coordination Mechanism 

Transfer Contract (Price) was developed as a tool for economics. Many corporations have divisional 

organizations, in which some or all of the separate divisions are virtually autonomous profit centers to achieve the 

benefits of decentralization in decision-making
32

. The transfer contract mechanism deals with the problem of pricing 

the products and services that are exchanged between such divisions within a firm and with the way these prices 

should be set in order to cause each division to act in such as way that firm profits are maximized as a whole. As 

illustrated in Fig. 2, transfer price essentially represents the price for the internal market when business unit B needs 

a product from business unit A. To incentivize the business units to achieve the firm-level best profit, the firm has to 

determine appropriate transfer price for the internal exchange. A wide variety of transfer pricing methods exist in 

practice under different contexts today
34

.  

 

 

Fig. 2. Original Meaning of Transfer Contract (Price). 
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    With respect to the acquisition field, Army, Navy, and Air Force all receive funding from DoD to develop 

systems under individual consideration. We define the transfer contract as the compensation that each stakeholder 

(e.g., Army) needs to pay to other stakeholders (e.g., Air Force) for consuming the shared resources. That is to say, 

the transfer contract represents the prices of using the shared resources for each stakeholder. And the problem 

becomes how to choose appropriate transfer contracts to induce the individual stakeholders to make development 

plans that could benefit the global stakeholder. The value associated with these transfer contracts is not always 

monetary as in economics. Instead, the transfer contracts in acquisition might represent the information value, partial 

capability units or a special type of technology.  

3.3. Model Formulation 

Under the framework of ADP and transfer contract, we build the model formulation in both a centralized and 

decentralized case, where the centralized case serves as a baseline for comparison. In centralized mode, the global 

stakeholder has the access to the full information and has the authority to make decisions with the objective of 

maximizing the overall SoS capability over time. The SoS capability at one time step is assumed as a linear 

combination of individual system capabilities. In a decentralized mode, each local stakeholder needs to solve an 

optimization problem. The SoS-level stakeholders do not make decisions directly but they guide the system of 

systems toward a SoS-level optimal capability by influencing local stakeholders’ decisions. The transfer contract 

coordination mechanism is incorporated in the optimization problem of each individual stakeholder. We list the 

mathematical formulation in Table 1.  

              Table 1.  Mathematical Formulation under Centralized and Decentralized Management 

 
Centralized 

(Baseline) 

Decentralized 

(stakeholder k) 

Objective Function Maximize the expected sum of 
SoS capability over time 

Maximize the expected sum of stakeholder k’s capability 
over time with incorporation of transfer contracts 

             
 
                  

   
  

        
                         

Budget Limits                
   

      
                          

Integer Decisions              
      

     

Transition Function                 
    

    
   

                
           

      
      

   
   

 

    The left column of Table 1 describes the centralized case and the right column describes the decentralized case. 

     denotes the vector of individual system capabilities,      denotes the system cost.    represents the state 

variable or vector of the number of different systems,    represents the decisions variables or vector of the number 

of systems that are added at each time step. We bound the objective function by budget constraint    at each time 

step. The transition function demonstrates the evolution of state variable     by acting the decisions, and the 

evolution of      by adding the uncertain change     
    from the environment. Note that in decentralized mode, each 

local stakeholder k needs to solve the optimization problem where     
  represents transfer contract mechanism and 

    
 

 delineates the estimated cost and decisions of other stakeholders. These equations are further translated to 

ADP structure to be solved.  

4. Preliminary Results 

In this section, we solve a synthetic example to explain the proposed approach and demonstrate the feasibility of 

finding good solutions. We assume that 1) a SoS-level stakeholder requires a type of capability (e.g. conduct 

terrestrial and maritime surface surveillance) to be accomplished over ten years; 2) each of the three individual 

stakeholders A, B, C (e.g., Army, Navy, Air Force) has two systems in the option pool. Under the assumptions, we 

recap our ultimate goal: individual stakeholder makes its own optimal development decisions (e.g., Army targets at 

maximizing the terrestrial surface surveillance) while these decisions can reach the aggregate optimal capability for 

the SoS-level stakeholder (e.g., maximizing the overall terrestrial and maritime surface surveillance) by choosing an 

appropriate set of transfer contracts (e.g., exchange of information value, converted monetary value of capabilities, 
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etc). We intend to demonstrate the applicability of approximate dynamic programming and transfer contract 

coordination mechanism by using notional data.  

4.1. Centralized Case – The Applicability of Approximate Dynamic Programming 

    We demonstrate the ability of ADP by comparing with other methods in a centralized mode where a virtual global 

stakeholder (without stakeholder A, B, C) possesses all the information. We start with the deterministic capability 

and cost of single systems, basing on which we solve the equations on the left column of Table 1. In this case, the 

SoS-level stakeholder optimizes the capability over ten years with decisions of whether developing systems {S1a, 

S2a, S1b, S2b, S1c, S2c} at each year. The individual system capability, cost and annual budget limit are given as 

notional numbers. We list the numbers in Table 2 and Table 3. 

Table 2. Input of capability and cost of individual systems. 

Stakeholder Stakeholder A Stakeholder B Stakeholder C 

Systems S1a S2a S1b S2b S1c S2c 

Capability 50 40 30 20 20 20 

Cost 80 70 60 50 40 20 

Table 3. Input of budget at each time step. 

Time Step t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 

Budget 220 250 180 200 230 170 200 280 120 240 

 

    This is a simple multi-stage problem that is solvable through a set of single-stage optimizations, by which we 

obtain the exact solution as a benchmark. Since we set the decision variables as binary variables (acquire or not 

acquire), we employ linear value function approximation to maintain simplicity while not losing much accuracy. We 

express our value function approximation as the linear combination of basis functions with the coefficients named 

adjusting parameters. The basis functions usually refer to the key features characterizing the future capabilities. 

Commonly, we choose the basis functions from the state variables. It is important to identify the appropriate basis 

functions, because they determine the accuracy of the results. The primary state variables in this case are the number 

of different systems at each stage, capability and cost of individual systems. We use all of them as our basis 

functions for a start. With the basis functions available, we employ a recursive least squares method to update the 

adjusting parameters in the value function approximation. The results are demonstrated in Fig. 3.   

 

  

Fig.3. (a) comparison of exact and approximate capability; (b) comparison of exact and approximate capability with reduced basis function.  

    As shown in Fig. 3(a), the objective capability obtained from ADP is very close to the exact objective capability; 

through calculation the approximate value is only 0.28% lower than the exact objective value and converges within 

20 iterations. Often times, to reduce the computational complexity, only key state variables are selected to represent 

the basis functions, though this may reduce the accuracy of the approximate result. For example, if we choose basis 

functions as the vector of number of systems and a constant value, the accuracy of the ADP objective becomes 10% 

lower than the exact optimal objective (at the first stage), as illustrated in Fig. 3(b). We can also observe that as time 
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progresses, the approximate value converges to the exact value. This is because the basis functions are less adequate 

to capture the future capabilities over ten stages than over one stage.  

    Next, we add uncertainty into the problem to validate the ADP implementation in a stochastic environment. We 

begin with the uncertainty of individual system capability (as shown in Table 1). It is reasonable to hypothesize that 

the variations of individual system capability occur at each stage due to exogenous information fluctuation such as 

the technology development or national priority change. In order to make the problem solvable by other methods, 

we give a fixed set of the individual system capability and the variation appears at each stage independently. We 

assume the variation as a uniform distribution with bounds [-2, 2] according to subjective judgment.  

    We still use the basis functions including all the state variables to implement the ADP algorithm. Through 

running 200 iterations we obtain an acceptable value function approximation, which we use to calculate the 

capability and decisions at each stage given a certain sample realization. We employ a posterior bound solution as a 

benchmark to compare with the results from ADP. Given a specific sample realization of the system capability 

variations, the posterior bound solution “cheats” by being able to use information only known in the future and 

solves the problem with the same techniques in the deterministic case. Since the uncertainty is quite simple, we also 

use classical backward recursive dynamic programming to conduct the analysis, which solves the problem through 

backward induction and expectation calculation. We observe some limitations of backward dynamic programming 

when doing the computation. For example, regardless of the large number of loops over the state variables to 

compute the future value expectation, it is almost impossible to calculate the expectation of the decision-dependent 

stochastic variables.   

The results when given a specific sample realization are shown in Fig. 4. Fig. 4(a) shows a comparison between 

the capability values from ADP, dynamic programming, and posterior bound solutions at each stage. It is apparent 

that the ADP solutions are quite acceptable. Specifically, Fig. 4(b) points out the iteration process of the objective 

value from ADP (value at first stage). We see that the curve does fluctuate but is stable, since fluctuation range is 

within 10% of the posterior optimum.  

Returning to the real world acquisition decision making process, data from the uncertainties tends to be exposed 

gradually, thus the actual ADP implementation for decision makers is 1) estimating the probability distribution of 

future uncertainties or building simulation models, 2) constructing the approximation of future value function based 

on characteristics of state variables, 3) using the approximate value function to compute the current decisions, 4) 

implementing the decisions in simulation model or real world with new data coming out to update the uncertainty 

and value function approximation, 5)  going back to step 3). Therefore, the implementation of ADP requires training 

data to obtain reasonable value function approximation.   

  

Fig. 4. (a) validation of ADP results under uncertainty; (b) percent of approximate objective over posterior optimal objective. 

    This simple example only demonstrates us the ability of ADP to generate reasonable results compared to exact 

solutions. In fact, the advantages of ADP reveal more when the problems become more complex. For example, it 

avoids the explosion of state space, decision space and sample space, and it can explicitly describe the decision-

dependent uncertainties, and it can apply to scenarios where uncertainties cannot be expressed as probability 

distributions. We will explore more of these in the future work and next section we will investigate the effect of 

transfer contract coordination mechanism.  
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4.2. Decentralized Case – The Effect of Transfer Contracts 

This section explores the effect of transfer contracts in multi-stakeholder planning under decentralization. We 

begin with re-stating the process in the decentralized scenario. The SoS-level stakeholder firstly announces the 

budget limits of each year as well as the transfer contract coordination scheme to the individual stakeholders. Then, 

under the budget limits, each component stakeholder proposes the potential systems to the SoS-level stakeholder and 

other peer stakeholders. Notwithstanding, the individual stakeholders tend to keep information of their own system 

capability and cost to themselves or only partially reveal the information to other stakeholders in order to, for 

example, attempt to gain the more funding or not lose funding. Therefore, when each component stakeholder aims to 

solve the optimal long-term development planning problem, it needs to estimate some values (e.g., system cost) of 

other stakeholders based on the information it already possesses. It is possible that the optimal decisions from each 

individual stakeholder may conflict with each other and conflict with the optimal decisions at the SoS-level. Thus 

we employ the transfer contract mechanism to coordinate between the individual stakeholders to generate global 

optimal solutions while incentivizing the local stakeholders.  

According to the assumption that stakeholder A knows potential systems under stakeholder B and C but does not 

know the exact system cost and associated decisions, stakeholder A estimates the value of cost and decisions of 

other stakeholders. We denote the estimated costs as      
  ,      

  ,      
  ,      

  ,      
   ,      

   and the decision 

variables as     
  ,    

  ,    
  ,    

  ,    
  ,    

  , where the first letter in the superscript represents the stakeholder who 

makes the estimation and the latter letter represents the stakeholder being estimated. We add the set of transfer 

contracts in the objective function of each stakeholder. Again the transfer contract represents the compensation 

(transferrable utility) that one stakeholder needs to pay to other stakeholders. The impact of transfer contract is to 

modify the objective function and influence the decisions of each component stakeholders. We denote the transfer 

contracts as     
  ,     

  ,     
  ,     

  ,     
  ,     

   where the superscript ‘AB’ means transferring from A to B. 

We formulate the equation in Table 4.  

Table 4. Formulation with transfer contract coordination 

Stakeholder A Stakeholder B Stakeholder C 

Objective:  

          
   

   
         

       
     

  
    

     
       

     
       

Subject To:  

    
   

       
     

        
     

       

    
    

    
   

Objective:   

          
   

   
         

       
     

  
    

     
       

     
     

Subject To:  

    
   

       
     

        
     

       

    
    

    
   

Objective:  

          
   

   
         

        
     

  
    

     
       

     
       

Subject To:  

    
   

       
     

        
     

       

    
    

    
   

 

We start with the decentralized decision making without any coordination (i.e., remove the transfer contract terms 

in the objective functions), and the results are illustrated in Fig. 5. Fig. 5(a) shows the capability of the global 

stakeholder and individual stakeholders in the decentralized case without any coordination. Fig. 5(b) illustrates the 

budget constraint violations due to the inaccuracy of model estimates and lack of coordination. In general, without 

coordination the stakeholders tend to have budget requests that diverge greatly from the budget constraints. In this 

case, when individual stakeholders submit their development plans, conflict occurs due to the limited available 

funding. The stakeholders need to negotiate to arrive at a balanced solution. Unfortunately, as stated previously, 

back and forth negotiation largely decreases the communication efficiency and probably reduces the quality of the 

solution. Therefore, we seek for mechanism that could guide the individual stakeholders to coordinate between 

themselves in a more automatic manner.  

We next examine the effect of transfer contracts on the capability and budget violation by giving a set of transfer 

contracts with arbitrary numbers. Fig. 6 displays the capability value and budget violation at each stage. This set of 

transfer contracts still cannot lead to SoS-level optimality within constraints, but through the coordination, we can 

find the capability change at each stage of different stakeholders and corresponding budget violation change. By 

comparing the left plots of Fig. 5 and Fig. 6, we find the capability reduction for SoS-level stakeholder when 

transfer contracts are incorporated.  However, the right plot in Fig. 6 demonstrates that the budget violation becomes 

much less with the inclusion of transfer contracts. Although we have only employed an arbitrary set of transfer 

contracts so far, we find the large chance to achieve valuable results.  



 Zhemei Fang & Daniel DeLaurentis/ Procedia Computer Science 00 (2015) 000–000 9 

  

Fig. 5. (a) capability in decentralized setting without coordination; (b) budget violation without coordination. 

      

Fig. 6. (a) capability in decentralized setting with given transfer contracts; (b) budget violation with given transfer contracts. 

5. Conclusion and Future Work 

This paper proposed a decentralized planning framework for SoS architecture analysis in acquisition context and 

demonstrated its applicability through a simplified example. The framework contributes to the current acquisition 

practices by addressing the decentralized natures of stakeholders and the potentials of solving complex problems. In 

addition to the high level (e.g., DoD, Army, etc) scenario described in this paper, the approach can potentially apply 

to the program management level as well (e.g., contracting strategies) when independent stakeholders (e.g., 

aerospace companies) involved are bounded by the shared resources. Near term work is focusing on characterizing 

the transfer contracts that lead to SoS-level optimality when individual stakeholders are making sequential decisions. 

Currently we conjecture that the transfer contract received by an individual stakeholder equals the approximated 

future value for this stakeholder losing the resources consumed by another stakeholder. Further work will 

concentrate on the practical application of the framework in acquisition field and extend to commercial perspective.   
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